Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
One Health Bulletin ; 2(7), 2022.
Article in English | CAB Abstracts | ID: covidwho-2268901

ABSTRACT

Objective: To review the characteristic of Coronavirus disease 2019 (COVID-19) outbreaks in mainland China, particularly post-Wuhan outbreaks, and to help design effective responses in the foreseeable future. Method: The data regarding COVID-19 outbreaks between December 2019 and March 16, 2022 were obtained from China's publicly available databases. The data were analyzed using descriptive statistics. Five outbreak stages were defined according to distinct epidemiological characteristics across different time periods over the past two years. Result: Since the 2020 Wuhan outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) local infections were confirmed in 37 995 cases as of March 16, 2022. We identified 285 isolated outbreaks in unrelated people that occurred in four additional distinct stages, over 57% of which had been imported, such as imported infected travelers and fomite transmission. The basic reproduction number (R0) of original SARS-CoV-2 was about 2.79, while the Delta variant was about 5.08 and Omicron was 7.0 or greater, resulting in the disease being more contagious during the fourth (Delta) and fifth (Omicron) stages than previous stages. Conclusion: China has experienced various COVID-19 outbreaks of different levels since the start of the pandemic in Wuhan, and local transmission is mainly caused by imported sources. If the "dynamic COVID-zero" policy is not appropriately followed, it will be difficult to contain the spread in China from overseas and to cope with the Omicron variant.

2.
One Health Bulletin ; 2(1):7, 2022.
Article in English | ProQuest Central | ID: covidwho-2144090

ABSTRACT

Objective: To review the characteristic of Coronavirus disease 2019 (COVID-19) outbreaks in mainland China, particularly post-Wuhan outbreaks, and to help design effective responses in the foreseeable future. Method: The data regarding COVID-19 outbreaks between December 2019 and March 16, 2022 were obtained from China’s publicly available databases. The data were analyzed using descriptive statistics. Five outbreak stages were defined according to distinct epidemiological characteristics across different time periods over the past two years. Result: Since the 2020 Wuhan outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) local infections were confirmed in 37 995 cases as of March 16, 2022. We identified 285 isolated outbreaks in unrelated people that occurred in four additional distinct stages, over 57% of which had been imported, such as imported infected travelers and fomite transmission. The basic reproduction number (R0) of original SARS-CoV-2 was about 2.79, while the Delta variant was about 5.08 and Omicron was 7.0 or greater, resulting in the disease being more contagious during the fourth (Delta) and fifth (Omicron) stages than previous stages. Conclusion: China has experienced various COVID-19 outbreaks of different levels since the start of the pandemic in Wuhan, and local transmission is mainly caused by imported sources. If the “dynamic COVID-zero” policy is not appropriately followed, it will be difficult to contain the spread in China from overseas and to cope with the Omicron variant.

3.
BMC Microbiol ; 22(1): 274, 2022 11 14.
Article in English | MEDLINE | ID: covidwho-2115637

ABSTRACT

BACKGROUND: Dozens of studies have demonstrated gut dysbiosis in COVID-19 patients during the acute and recovery phases. However, a consensus on the specific COVID-19 associated bacteria is missing. In this study, we performed a meta-analysis to explore whether robust and reproducible alterations in the gut microbiota of COVID-19 patients exist across different populations. METHODS: A systematic review was conducted for studies published prior to May 2022 in electronic databases. After review, we included 16 studies that comparing the gut microbiota in COVID-19 patients to those of controls. The 16S rRNA sequence data of these studies were then re-analyzed using a standardized workflow and synthesized by meta-analysis. RESULTS: We found that gut bacterial diversity of COVID-19 patients in both the acute and recovery phases was consistently lower than non-COVID-19 individuals. Microbial differential abundance analysis showed depletion of anti-inflammatory butyrate-producing bacteria and enrichment of taxa with pro-inflammatory properties in COVID-19 patients during the acute phase compared to non-COVID-19 individuals. Analysis of microbial communities showed that the gut microbiota of COVID-19 recovered patients were still in unhealthy ecostates. CONCLUSIONS: Our results provided a comprehensive synthesis to better understand gut microbial perturbations associated with COVID-19 and identified underlying biomarkers for microbiome-based diagnostics and therapeutics.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Dysbiosis/microbiology , Bacteria/genetics , Feces/microbiology
4.
Remote Sensing ; 14(19):4793, 2022.
Article in English | ProQuest Central | ID: covidwho-2066344

ABSTRACT

Since the outbreak of the Ukrainian-Russian conflict on 24 February 2022, Ukraine’s economy, society, and cities have been devastated and struck on multiple fronts, with large numbers of refugees fleeing to neighboring countries. The lighting systems in Ukrainian cities have been severely restricted due to Russian missile bombing and curfew policies. The power shortages adversely affected the livelihoods of the Ukrainian residents dramatically. For a timely assessment of the power shortages’ extent and the affected population in Ukraine, this study tracked the dynamics of nighttime light emissions in Ukraine based on the newly developed daily Black Marble product (VNP46A2) from NASA. The results show that the average light radiance in Ukrainian urban areas has decreased by about 37% since the eruption of the war, with Kiev city being the most dramatic region, having a post-conflict decrease of about 51%. In addition, by introducing near-real-time population data, we have implemented a survey of the affected population in Ukraine suffering from war-induced power shortages. Estimates show that about 17.3 million Ukrainian residents were affected by power shortages. In more detail, the number of children under 10 years old was about 2.35 million (about 5.24% of the total population), while the number of elderly people over 60 years old was about 3.53 million (about 7.86% of the total population). Generally, the results of this study could contribute positively to the timely assessment of the impact of the conflict and the implementation of humanitarian relief.

5.
J Vis Exp ; (185)2022 07 25.
Article in English | MEDLINE | ID: covidwho-1988090

ABSTRACT

Biomimetic nanoparticles obtained from bacteria or viruses have attracted substantial interest in vaccine research and development. Outer membrane vesicles (OMVs) are mainly secreted by gram-negative bacteria during average growth, with a nano-sized diameter and self-adjuvant activity, which may be ideal for vaccine delivery. OMVs have functioned as a multifaceted delivery system for proteins, nucleic acids, and small molecules. To take full advantage of the biological characteristics of OMVs, bioengineered Escherichia coli-derived OMVs were utilized as a carrier and SARS-CoV-2 receptor-binding domain (RBD) as an antigen to construct a "Plug-and-Display" vaccine platform. The SpyCatcher (SC) and SpyTag (ST) domains in Streptococcus pyogenes were applied to conjugate OMVs and RBD. The Cytolysin A (ClyA) gene was translated with the SC gene as a fusion protein after plasmid transfection, leaving a reactive site on the surface of the OMVs. After mixing RBD-ST in a conventional buffer system overnight, covalent binding was formed between the OMVs and RBD. Thus, a multivalent-displaying OMV vaccine was achieved. By replacing with diverse antigens, the OMVs vaccine platform can efficiently display a variety of heterogeneous antigens, thereby potentially rapidly preventing infectious disease epidemics. This protocol describes a precise method for constructing the OMV vaccine platform, including production, purification, bioconjugation, and characterization.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Antigens/metabolism , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , SARS-CoV-2
6.
Front Immunol ; 13: 833418, 2022.
Article in English | MEDLINE | ID: covidwho-1771038

ABSTRACT

As TLR2 agonists, several lipopeptides had been proved to be candidate vaccine adjuvants. In our previous study, lipopeptides mimicking N-terminal structures of the bacterial lipoproteins were also able to promote antigen-specific immune response. However, the structure-activity relationship of lipopeptides as TLR2 agonists is still unclear. Here, 23 synthetic lipopeptides with the same lipid moiety but different peptide sequences were synthesized, and their TLR2 activities in vitro and mucosal adjuvant effects to OVA were evaluated. LP1-14, LP1-30, LP1-34 and LP2-2 exhibited significantly lower cytotoxicity and stronger TLR2 activity compared with Pam2CSK4, the latter being one of the most potent TLR2 agonists. LP1-34 and LP2-2 assisted OVA to induce more profound specific IgG in sera or sIgA in BALF than Pam2CSK4. Furthermore, the possibility of LP1-34, LP2-2 and Pam2CSK4 as the mucosal adjuvant for the SARS-CoV-2 recombinant RBD (rRBD) was investigated. Intranasally immunized with rRBD plus either the novel lipopeptide or Pam2CSK4 significantly increased the levels of specific serum and respiratory mucosal IgG and IgA, while rRBD alone failed to induce specific immune response due to its low immunogenicity. The novel lipopeptides, especially LP2-2, significantly increased levels of rRBD-induced SARS-CoV-2 neutralizing antibody in sera, BALF and nasal wash. Finally, Support vector machine (SVM) results suggested that charged residues in lipopeptides might be beneficial to the agonist activity, while lipophilic residues might adversely affect the agonistic activity. Figuring out the relationship between peptide sequence in the lipopeptide and its TLR2 activity may lay the foundation for the rational design of novel lipopeptide adjuvant for COVID-19 vaccine.


Subject(s)
COVID-19 , Lipopeptides , Adjuvants, Immunologic/pharmacology , Adjuvants, Pharmaceutic , COVID-19 Vaccines , Humans , Immunity , Immunoglobulin G , Lipopeptides/pharmacology , SARS-CoV-2 , Toll-Like Receptor 2
8.
Front Immunol ; 12: 772511, 2021.
Article in English | MEDLINE | ID: covidwho-1556241

ABSTRACT

Recent exposure to seasonal coronaviruses (sCoVs) may stimulate cross-reactive antibody responses against severe acute respiratory syndrome CoV 2 (SARS-CoV-2). However, previous studies have produced divergent results regarding protective or damaging immunity induced by prior sCoV exposure. It remains unknown whether pre-existing humoral immunity plays a role in vaccine-induced neutralization and antibody responses. In this study, we collected 36 paired sera samples from 36 healthy volunteers before and after immunization with inactivated whole-virion SARS-CoV-2 vaccines for COVID-19, and analyzed the distribution and intensity of pre-existing antibody responses at the epitope level pre-vaccination as well as the relationship between pre-existing sCoV immunity and vaccine-induced neutralization. We observed large amounts of pre-existing cross-reactive antibodies in the conserved regions among sCoVs, especially the S2 subunit. Excep t for a few peptides, the IgG and IgM fluorescence intensities against S, M and N peptides did not differ significantly between pre-vaccination and post-vaccination sera of vaccinees who developed a neutralization inhibition rate (%inhibition) <40 and %inhibition ≥40 after two doses of the COVID-19 vaccine. Participants with strong and weak pre-existing cross-reactive antibodies (strong pre-CRA; weak pre-CRA) had similar %inhibition pre-vaccination (10.9% ± 2.9% vs. 12.0% ± 2.2%, P=0.990) and post-vaccination (43.8% ± 25.1% vs. 44.6% ± 21.5%, P=0.997). Overall, the strong pre-CRA group did not show a significantly greater increase in antibody responses to the S protein linear peptides post-vaccination compared with the weak pre-CRA group. Therefore, we found no evidence for a significant impact of pre-existing antibody responses on inactivated vaccine-induced neutralization and antibody responses. Our research provides an important basis for inactivated SARS-CoV-2 vaccine use in the context of high sCoV seroprevalence.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/immunology , Cross Reactions/immunology , SARS-CoV-2/immunology , Adult , COVID-19/prevention & control , Coronavirus/immunology , Coronavirus Infections/immunology , Female , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Neutralization Tests , Seasons , Vaccines, Inactivated/immunology
9.
EPMA J ; 12(3): 307-324, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1544595

ABSTRACT

AIMS: Coronavirus disease 2019 (COVID-19) is rapidly spreading worldwide. Drug therapy is one of the major treatments, but contradictory results of clinical trials have been reported among different individuals. Furthermore, comprehensive analysis of personalized pharmacotherapy is still lacking. In this study, analyses were performed on 47 well-characterized COVID-19 drugs used in the personalized treatment of COVID-19. METHODS: Clinical trials with published results of drugs use for COVID-19 treatment were collected to evaluate drug efficacy. Drug-to-Drug Interactions (DDIs) were summarized and classified. Functional variations in actionable pharmacogenes were collected and systematically analysed. "Gene Score" and "Drug Score" were defined and calculated to systematically analyse ethnicity-based genetic differences, which are important for the safer use of COVID-19 drugs. RESULTS: Our results indicated that four antiviral agents (ritonavir, darunavir, daclatasvir and sofosbuvir) and three immune regulators (budesonide, colchicine and prednisone) as well as heparin and enalapril could generate the highest number of DDIs with common concomitantly utilized drugs. Eight drugs (ritonavir, daclatasvir, sofosbuvir, ribavirin, interferon alpha-2b, chloroquine, hydroxychloroquine (HCQ) and ceftriaxone had actionable pharmacogenomics (PGx) biomarkers among all ethnic groups. Fourteen drugs (ritonavir, daclatasvir, prednisone, dexamethasone, ribavirin, HCQ, ceftriaxone, zinc, interferon beta-1a, remdesivir, levofloxacin, lopinavir, human immunoglobulin G and losartan) showed significantly different pharmacogenomic characteristics in relation to the ethnic origin of the patient. CONCLUSION: We recommend that particularly for patients with comorbidities to avoid serious DDIs, the predictive, preventive, and personalized medicine (PPPM, 3 PM) strategies have to be applied for COVID-19 treatment, and genetic tests should be performed for drugs with actionable pharmacogenes, especially in some ethnic groups with a higher frequency of functional variations, as our analysis showed. We also suggest that drugs associated with higher ethnic genetic differences should be given priority in future pharmacogenetic studies for COVID-19 management. To facilitate translation of our results into clinical practice, an approach conform with PPPM/3 PM principles was suggested. In summary, the proposed PPPM/3 PM attitude should be obligatory considered for the overall COVID-19 management. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00247-0.

10.
Front Public Health ; 9: 697642, 2021.
Article in English | MEDLINE | ID: covidwho-1394841

ABSTRACT

Background: The novel 2019 coronavirus disease (COVID-19) pandemic has spread rapidly worldwide and poses a global health threat. Aims: This study assessed the prevalence of anxiety and depression symptoms in Chinese students during the COVID-19 pandemic and explored potential moderating factors. Methods: We searched English and Chinese databases using pertinent keywords for articles published and unpublished, up until November 2020. The estimate of the overall prevalence of anxiety and depression was conducted through a random-effects model. Results: A total of 31 cross-sectional studies were included. The overall prevalence of anxiety and depression symptoms in Chinese students during the COVID-19 pandemic was 24.0% (95% CI [20.0-29.0%]) and 22.0% (95% CI [18.0-27.0%]) respectively. Subgroup analyses revealed that Chinese middle school students were at heightened risk of anxiety, while university students were at heightened risk of depression. Students who lived in higher-risk areas presented severe anxiety and depression, especially during the late period of the COVID-19 epidemic. Conclusions: Overall, during the COVID-19 pandemic, there was a high prevalence of anxiety in Chinese students and a high prevalence of depression among Chinese students in high-risk areas. Therefore, comprehensive and targeted psychological interventions should be developed to address the mental health of students in different grades, especially in high-risk areas and during the late period of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , Anxiety/epidemiology , China/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Humans , SARS-CoV-2 , Students
12.
Commun Biol ; 4(1): 225, 2021 02 12.
Article in English | MEDLINE | ID: covidwho-1387490

ABSTRACT

Serodiagnosis of SARS-CoV-2 infection is impeded by immunological cross-reactivity among the human coronaviruses (HCoVs): SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43, 229E, HKU1, and NL63. Here we report the identification of humoral immune responses to SARS-CoV-2 peptides that may enable discrimination between exposure to SARS-CoV-2 and other HCoVs. We used a high-density peptide microarray and plasma samples collected at two time points from 50 subjects with SARS-CoV-2 infection confirmed by qPCR, samples collected in 2004-2005 from 11 subjects with IgG antibodies to SARS-CoV-1, 11 subjects with IgG antibodies to other seasonal human coronaviruses (HCoV), and 10 healthy human subjects. Through statistical modeling with linear regression and multidimensional scaling we identified specific peptides that were reassembled to identify 29 linear SARS-CoV-2 epitopes that were immunoreactive with plasma from individuals who had asymptomatic, mild or severe SARS-CoV-2 infections. Larger studies will be required to determine whether these peptides may be useful in serodiagnostics.


Subject(s)
COVID-19/immunology , COVID-19/virology , Peptide Mapping , Peptides/immunology , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , COVID-19/blood , Chiroptera , Epitopes/immunology , Humans , Immunoglobulin G/metabolism , Peptides/chemistry , Proteome/metabolism
13.
NPJ Biofilms Microbiomes ; 7(1): 61, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322476

ABSTRACT

The human oral and gut commensal microbes play vital roles in the development and maintenance of immune homeostasis, while its association with susceptibility and severity of SARS-CoV-2 infection is barely understood. In this study, we investigated the dynamics of the oral and intestinal flora before and after the clearance of SARS-CoV-2 in 53 COVID-19 patients, and then examined their microbiome alterations in comparison to 76 healthy individuals. A total of 140 throat swab samples and 81 fecal samples from these COVID-19 patients during hospitalization, and 44 throat swab samples and 32 fecal samples from sex and age-matched healthy individuals were collected and then subjected to 16S rRNA sequencing and viral load inspection. We found that SARS-CoV-2 infection was associated with alterations of the microbiome community in patients as indicated by both alpha and beta diversity indexes. Several bacterial taxa were identified related to SARS-CoV-2 infection, wherein elevated Granulicatella and Rothia mucilaginosa were found in both oral and gut microbiome. The SARS-CoV-2 viral load in those samples was also calculated to identify potential dynamics between COVID-19 and the microbiome. These findings provide a meaningful baseline for microbes in the digestive tract of COVID-19 patients and will shed light on new dimensions for disease pathophysiology, potential microbial biomarkers, and treatment strategies for COVID-19.


Subject(s)
COVID-19/microbiology , Gastrointestinal Microbiome/physiology , SARS-CoV-2/isolation & purification , Viral Load , Bacteria/classification , Bacteria/genetics , COVID-19/diagnosis , COVID-19/virology , Feces/microbiology , Female , Hospitalization , Humans , Male , Mouth/microbiology , RNA, Ribosomal, 16S , SARS-CoV-2/genetics
14.
Genome Med ; 13(1): 118, 2021 07 19.
Article in English | MEDLINE | ID: covidwho-1318291

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, has been associated with neurological and neuropsychiatric illness in many individuals. We sought to further our understanding of the relationship between brain tropism, neuro-inflammation, and host immune response in acute COVID-19 cases. METHODS: Three brain regions (dorsolateral prefrontal cortex, medulla oblongata, and choroid plexus) from 5 patients with severe COVID-19 and 4 controls were examined. The presence of the virus was assessed by western blot against viral spike protein, as well as viral transcriptome analysis covering > 99% of SARS-CoV-2 genome and all potential serotypes. Droplet-based single-nucleus RNA sequencing (snRNA-seq) was performed in the same samples to examine the impact of COVID-19 on transcription in individual cells of the brain. RESULTS: Quantification of viral spike S1 protein and viral transcripts did not detect SARS-CoV-2 in the postmortem brain tissue. However, analysis of 68,557 single-nucleus transcriptomes from three distinct regions of the brain identified an increased proportion of stromal cells, monocytes, and macrophages in the choroid plexus of COVID-19 patients. Furthermore, differential gene expression, pseudo-temporal trajectory, and gene regulatory network analyses revealed transcriptional changes in the cortical microglia associated with a range of biological processes, including cellular activation, mobility, and phagocytosis. CONCLUSIONS: Despite the absence of detectable SARS-CoV-2 in the brain at the time of death, the findings suggest significant and persistent neuroinflammation in patients with acute COVID-19.


Subject(s)
Brain/metabolism , COVID-19/immunology , Gene Expression Profiling/methods , Immunity/genetics , Immunity/immunology , Transcriptome , Choroid Plexus/metabolism , Gene Expression , Gene Regulatory Networks , Humans , Inflammation , Microglia , Prefrontal Cortex/metabolism , SARS-CoV-2/genetics
15.
Innovation (Camb) ; 2(2): 100116, 2021 May 28.
Article in English | MEDLINE | ID: covidwho-1225429

ABSTRACT

COVID-19 has spread globally to over 200 countries with more than 40 million confirmed cases and one million deaths as of November 1, 2020. The SARS-CoV-2 virus, leading to COVID-19, shows extremely high rates of infectivity and replication, and can result in pneumonia, acute respiratory distress, or even mortality. SARS-CoV-2 has been found to continue to rapidly evolve, with several genomic variants emerging in different regions throughout the world. In addition, despite intensive study of the spike protein, its origin, and molecular mechanisms in mediating host invasion are still only partially resolved. Finally, the repertoire of drugs for COVID-19 treatment is still limited, with several candidates still under clinical trial and no effective therapeutic yet reported. Although vaccines based on either DNA/mRNA or protein have been deployed, their efficacy against emerging variants requires ongoing study, with multivalent vaccines supplanting the first-generation vaccines due to their low efficacy against new strains. Here, we provide a systematic review of studies on the epidemiology, immunological pathogenesis, molecular mechanisms, and structural biology, as well as approaches for drug or vaccine development for SARS-CoV-2.

16.
J Behav Addict ; 10(1): 169-180, 2021 Mar 10.
Article in English | MEDLINE | ID: covidwho-1127815

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) pandemic has profoundly impacted aspects of human life globally. Playing videogames has been encouraged by several organizations to help individuals cope with the COVID-19 pandemic and associated restrictive measures. This longitudinal study was the first to examine gaming in the context of the pandemic and its association with depressive and anxiety symptoms. METHODS: The sample comprised 1,778 children and adolescents (50.7% male) who were part of the Project of School Mental Health in Southwest China. Data were collected at two-time intervals: before the COVID-19 pandemic (October to November 2019 - [T1]) and during the COVID-19 pandemic (April to May 2020 - [T2]). Data were collected on perceived COVID-19 impacts, videogame use, Internet Gaming Disorder (IGD), and depressive and anxiety symptoms. Cross-lagged panel models were computed to examine longitudinal relationships. RESULTS: The results indicated that both videogame use and IGD increased significantly for adolescents at T2. The cross-lagged panel model results suggested that depressive and anxiety symptoms at T1 positively predicted IGD and videogame use at T2 (especially for boys), but not inversely. Perceived COVID-19 impacts mediated the relationship between depressive and anxiety symptoms at T1 and IGD at T2. CONCLUSION: Children and adolescents both increased videogame use at T2, but only adolescents significantly increased IGD severity at T2. The findings supported the compensatory hypothesis, and are consistent with the Interaction of Person-Affect-Cognition-Execution model as individual responses to COVID-19 may function as a mediator between personal predisposing variables and IGD.


Subject(s)
Anxiety Disorders/complications , COVID-19/psychology , Depressive Disorder/complications , Internet Addiction Disorder/complications , Video Games/psychology , Adolescent , Anxiety Disorders/psychology , Child , China , Depressive Disorder/psychology , Humans , Internet Addiction Disorder/psychology , Longitudinal Studies , Pandemics , SARS-CoV-2 , Severity of Illness Index
17.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.08.425999

ABSTRACT

In coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the relationship between brain tropism, neuroinflammation and host immune response has not been well characterized. We analyzed 68,557 single-nucleus transcriptomes from three brain regions (dorsolateral prefrontal cortex, medulla oblongata and choroid plexus) and identified an increased proportion of stromal cells and monocytes in the choroid plexus of COVID-19 patients. Differential gene expression, pseudo-temporal trajectory and gene regulatory network analyses revealed microglial transcriptome perturbations, mediating a range of biological processes, including cellular activation, mobility and phagocytosis. Quantification of viral spike S1 protein and SARS-CoV-2 transcripts did not support the notion of brain tropism. Overall, our findings suggest extensive neuroinflammation in patients with acute COVID-19.


Subject(s)
Coronavirus Infections , COVID-19 , Brain Diseases , Papilloma, Choroid Plexus
18.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.11.426080

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in golden Syrian hamster (GSH) causes lungs pathology and resembles to human corona virus disease (Covid-19). Extra-pulmonary pathologies and immunological parameters of SARS-CoV-2 infection remained undefined in GSH. Using in silico modelling, we identified the similarities between human and hamster angiotensin-converting enzyme-2 (ACE-2), neuropilin-1 (NRP-1) that bind to receptor-binding domain (RBD) and S1 fragment of spike protein of SARS-CoV-2. SARS-CoV-2 infection led to lung pathologies, and cardiovascular complications (CVC) marked by interstitial coronary fibrosis and acute inflammatory response. Serum lipidomic and metabolomic profile of SARS-CoV-2-infected GSH revealed changes in serum triglycerides (TG) and low-density lipoprotein (LDL), and alterations in metabolites that correlated with Covid19. Together, we propose GSH as an animal model to study SARS-CoV-2 infection and its therapy associated with pulmonary and extra-pulmonary pathologies.


Subject(s)
Coronavirus Infections , Cardiovascular Diseases , Severe Acute Respiratory Syndrome , Coronary Disease , Virus Diseases , COVID-19
19.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.09.426021

ABSTRACT

A main clinical parameter of Covid-19 pathophysiology is hypoxia. Here we show that hypoxia decreases the attachment of the receptor binding domain (RBD) and the S1 subunit (S1) of the spike protein to epithelial cells. In Vero E6 cells, hypoxia reduces the protein levels of ACE2, which might in part explain the observed reduction of the infection rate. However, hypoxia also inhibits the binding of the spike to human lung epithelial cells lacking ACE2 expression, indicating that hypoxia modulates the expression of additional binding partners of SARS-CoV-2. We show that hypoxia also decreases the total cell surface levels of heparan sulfate, a known attachment receptor of SARS-CoV-2, by reducing the expression of syndecan-1 and syndecan3, the main proteoglycans containing heparan sulfate. Our study indicates that hypoxia acts to prevent SARS-CoV-2 infection, suggesting that the hypoxia signaling pathway might offer therapeutic opportunities for the treatment of Covid-19.


Subject(s)
Infections , COVID-19 , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL